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Motivation

Are we paying a fair price for chiral fermion simulations?
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Why minimally Doubled Fermions?

Utility: Overlap/Domain wall are expensive.
Nature tells: 2d graphene electrons are chirally (sublattice) symmetric.

An incomplete list:
e Karsten-Wilczek fermion;

e 4d graphene/Creutz action, orthogonal axis action (A.B.), Bedaque et
al., and many more.

Problem: violation of cubic/hypercubic symmetries.
e Add counterterms to restore symmetry, Capitani et al:

= needs fine tuning like Wilson fermion!

A. Borigi Lattice 2014, Columbia University, 23-28 June 2014 0-3



Minimally doubled fermions violate unitarity

Example: Karsten-Wilczek fermion.

Dg%,v:im sinp4+r2(1—cospk) +iysinp, |r|>1/2
k

= Complex energies:

sinh £ = osinp + ir Z(l — COS Pi)
k

Fine tuning may be enough on an Euclidean lattice:
‘time’ could be along any direction!

Numerical investigations:

e Karsten-Wilczek fermions: Weber (this conference);

e Borici-Creutz fermions: Zeqirllari, in progress.
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Fermions on the lattice

Something is always broken!

e Lorentz invariance broken to hypercubic symmetry:

= A lattice fermion with all continuum symmetries is tmpossible!

e Nielsen-Ninomiya theorem:

Doublers are unaviodable on the lattice.

e Fermion actions:

— Single fermion with broken chiral symmetry (Wilson,. .. );
— Staggered fermions with remnant chiral symmetry;

— Ginsparg-Wilson fermions with exact chiral symmetry.
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How does it work?

e Continuum limit naive fermion spectrum:
Ey *(27) = COSp] 01P1 + COSP5 OaP2 + COS P35 03P3
ﬁ S {(07 0, 0)7 (Ov 0, 7T)7 (07 T, 0)7 (7T7 0, 0)7 (07 T, W): (7T> 0, 7T)7 (7T7 T, O)7 (7T> T, 77)}

e Chirality x(p *) = cos p} cos p} cos p}

P X(p ")
(0,0,0) 1
(0,0,m), (0,7,0), (7,0,0) | -1
(0,7, m), (m,0,m), (m,m,0) | 1
(7,7, m) -1

e Wilson fermions:

Doublers pushed at the cutoff = Broken chiral symmetry.

e Staggered fermions:

Spinors distributed around plaquette = Broken ‘taste’ symmetry.

= Something is always broken!
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Overlap/Domain Wall Fermions

On the-mass-shell chirality
Ginsparg-Wilson relation {v5, D} = aD~5D

e Overlap fermions: zero mode protection;

e Domain Wall fermions: walls isolate and separate chiral modes.

Three great things about GW fermions

1. Great theory: symmetry exact on the lattice;
2. Great complexity: nested/bd inversions;

3. Great difficulty: Hamiltonian almost no spectral gap.

= Full 5D Domain wall: remnant residual mass, however small.

= Overlap operator/DW with Pauli-Villars: potentially nonlocal.

A lot of progress: a question of computer time!
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Explore minimally doubled fermions

Fine tuning could be a solution, but it is not yet attractive!

Restoring hypercubic symmetry without fine tuning is more attractive.

At least restore unitarity and be on the safe side.
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Crank-Nicolson discretization scheme

e Example: Schrodinger equation in Euclidean space:

ohY(t,x) = HY(t,x) , Y (0,x) =v,(x) .

e Forward differences:

OY(t,x) — — [(t + ar, @) — B(t, 2)]

a¢

e = order O(a;) errors = Euler scheme.

e (Crank-Nicholson scheme:

Hy(t,2) — 5 [b(t, ) + (¢ +a,,2)]

= Y(t+ay, ) =

= O

A. Borigi

2
Ay

) errors!

) = (1t + 1740 vita)
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Immediate implication:
halving the speicies of the naive action!

e Momentum space spin-1/2 Hamiltonian on the lattice: H = & sin p;

e = (Crank-Nicolson time discretised operator:
/ i L, .
d'(p) = e'P* —1—|—§asmp (et 4 1) .

e Solutions:

d(p)=0 < 2isin%+5’sinﬁ COS%:O.

e = 8 zeros located at the edges of the 3d Brillouin zone.
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Dirac fermions

Add opposite chirality partner:

D*(p) =y (€7t — 1) + |

Z’ysmp (et 4-1)

Result:

e 8 degenerate flavors of Dirac fermions;
e Second order accuracy in time;

e Broken cubic symmetry.
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Restore cubic symmetry

1. Add isospin partner;

2. Use backward differences for the partner.

D (p) = (€ — 1) + =7 sinp (¢ + 1)

| | i
D7(p) =71 (1 —e™™) + (7™ +1) 57sinp

Result:

e Cubic symmetry restoration using flavored matrix v4 ® 7;
® 75 symmetric operator;
e Doublet of 8 flavors: 16 degenerate flavors;

e Second order accuracy in time.
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Reduction to 2 flavors: Wilson fermions in 3-space

Wilson approach in 3-space: only one fermion in continuum limit

; 1
Dl (p) = (™ = 1) +

iy sin p’+ Z(l — COSpk)] (e’P* 4 1)
k

: : ... .
D‘;/(p) = 4 (1 _ 6—zp4) 4+ (e—zm -+ 1) 5 [w sSinp + Z(l — COSpk)]
k

Result:

o 2 flavors;
® 75 symmetric operator;
e Second order accuracy in time;

e Reduced chiral symmetry breaking w.r.t. Wilson fermion.
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Minimally doubled fermions

Start with the theory of 8 flavors:

. i
DR (p) = s (€7t —1) + o 7sinp (e +1)

Use Borici-Creutz construction in 3-space:

D(p) =1 (€7 = 1) + = 3 [y sinpr + 7 (cospr — 1] (€7 +1)
k
> = 3
k k
= 2 flavors with broken cubic symmetry!
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Weyl fermions

Nielsen-Ninomiya theorem: Doublers unavoidable

It is possible, however:

e A theory of many particles with different speed of light:

E,.(p)=cponp, n=12,....2m.

e = Non-degenerate spectrum;
e The ground state is our theory;

e Chiral anomaly is not neccessarily canceled!
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Lattice implementation

e Start from Crank-Nicolson discretisation in time and naive discretisation

in 3-space:

1
d' (p) = e'P4 —1+208mp( et 4 1) ;

e Add a pure imaginary operator of the Wilson type:

1 .
d(p) = e"P4 —1+2 5’sinﬁ+ir2(1cospk)] (e* 4+ 1) .

k

e d(p) =0 «

{QSm—
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Particle spectra

e 8 zeros in the edges of 3d Brillouin zone:

ﬁ* S {(07 07 0)7 (07 07 7T)7 (07 7T7 0)7 (7T7 07 0)7 (07 7T7 ﬂ-)’ (7T7 07 ﬂ-)? (ﬂ-? 7T7 0)7 (7T7 7T7 7-‘-)}
e Define n(p*) =2 >, (1 — cosp;)
e = D(p)=0 < tan%‘l = —rn(p*).

e Define chirality x(p *) = cospj cospscosp; =

p* n(P*) | x(p*) | Degeneracy
((), 0,0) 0 1 1
(0,0,m), (0,7,0), (w,0,0) | 1 -1 3
(0,7, m), (m,0,m), (m,m,0) | 2 1 3
(7,7, ) 3 -1 1
e Continuum limit dispersion relation: F,(p) = 1 fq’ﬁi s, n=20,1,2,3.

e Ground state with definite chirality.
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Conclusions

CN discretisation offers a new dimension for exploring lattice fermions:
e LEixplicit unitarity;

e 2 flavors of Wilson type fermions in 3-space and second order accyracy
in time;

e 2 flavors of minimally doubled fermions with broken cucic symmetry;

e A theory of 8 non-degenerate Weyl fermions.
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